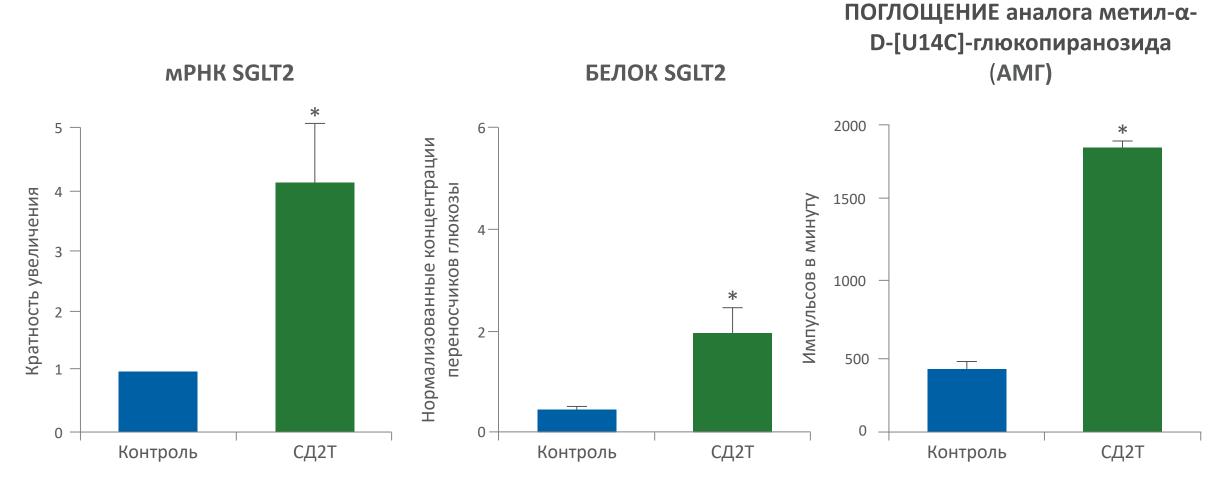
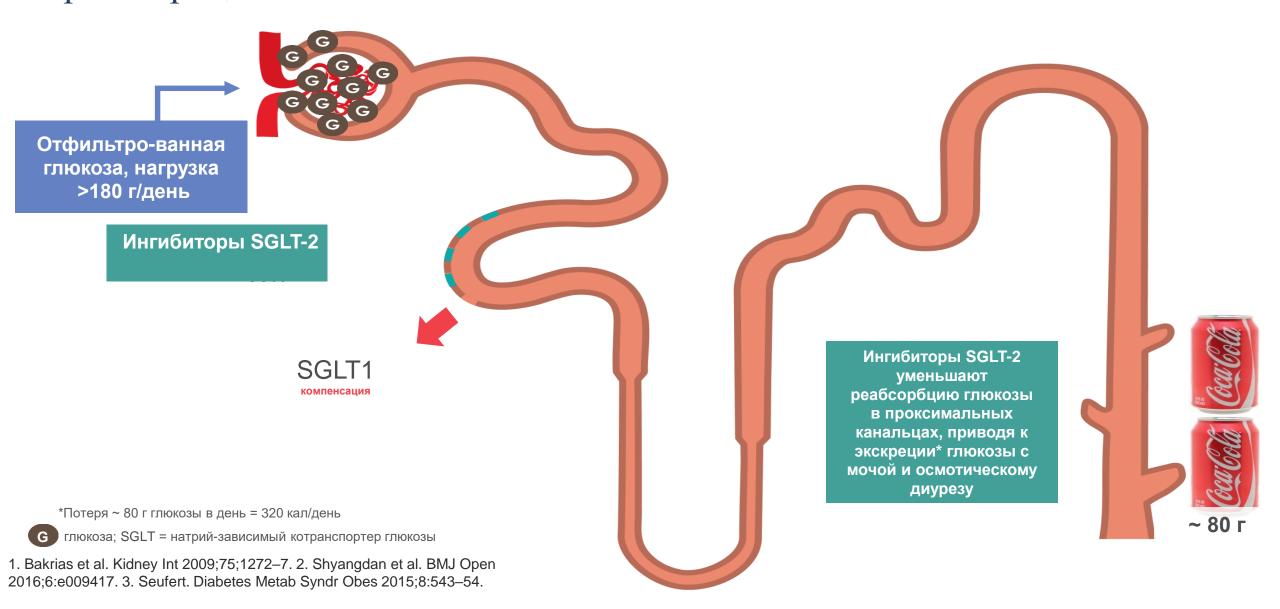

Место ингибиторов НГЛТ-2 в клинических рекомендациях и реальной клинической практике: вопросы и ответы


Галстян Г.Р. – профессор, д.м.н. заведующий отделением диабетической стопы ФГБУ «НМИЦ эндокринологии» Минздрава России

11 звеньев патогенеза СД 2 – роль почек

Stanley S. Schwartz et al. Diab Care 2016;39:179-186


Повышенный уровень экспрессии SGLT2 и повышенная активность переносчика глюкозы у пациентов с СД 2 типа

Средний почечный порог глюкозы у здоровых лиц составляет 10-11 ммоль/л При СД 2 типа он может превышать 14-15 ммоль/л!

^{*}p < 0,05-0,01.

Ингибиторы НГЛТ-2 уменьшают гипергликемию за счет ингибирования реабсорбции глюкозы $^{1-3}$


Ингибиторы почечного SGLT2: инсулиннезависимый механизм действия у пациентов СД 2 типа¹⁻⁴

Инсулинзависимые механизмы

Действие инсулина

- Тиазолидиндионы
- Метформин

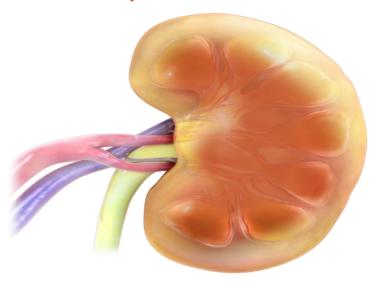
Жировая ткань, мышцы и печень

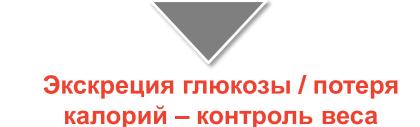
Секреция инсулина

- Производные СМ
- Агонисты ГПП-1 *
- Ингибиторы ДПП-4 *
- Меглитиниды

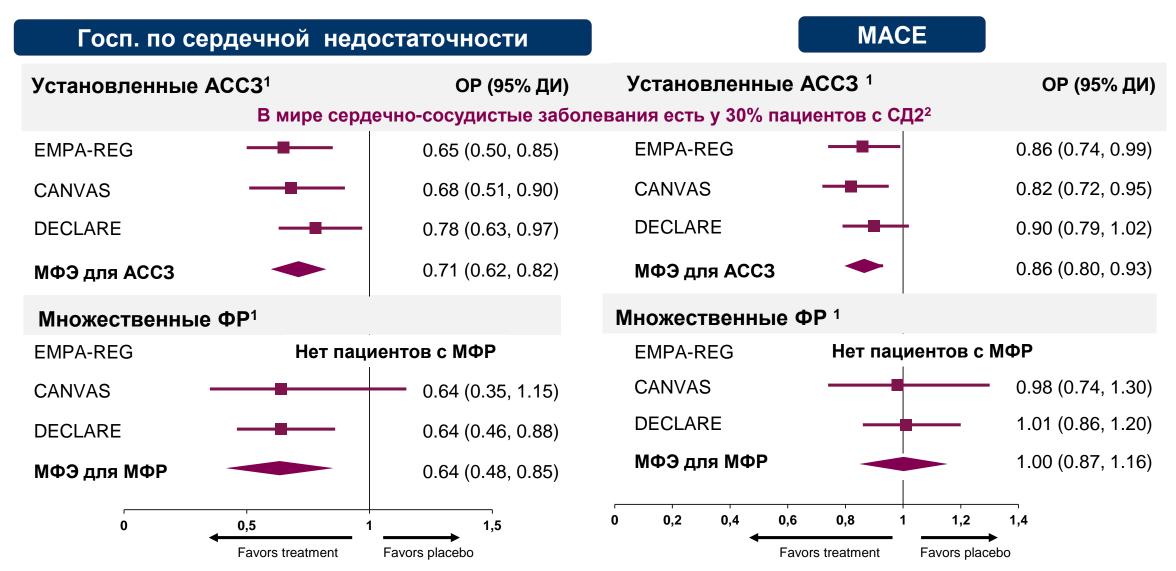
Заместительная терапия

■ Инсулин

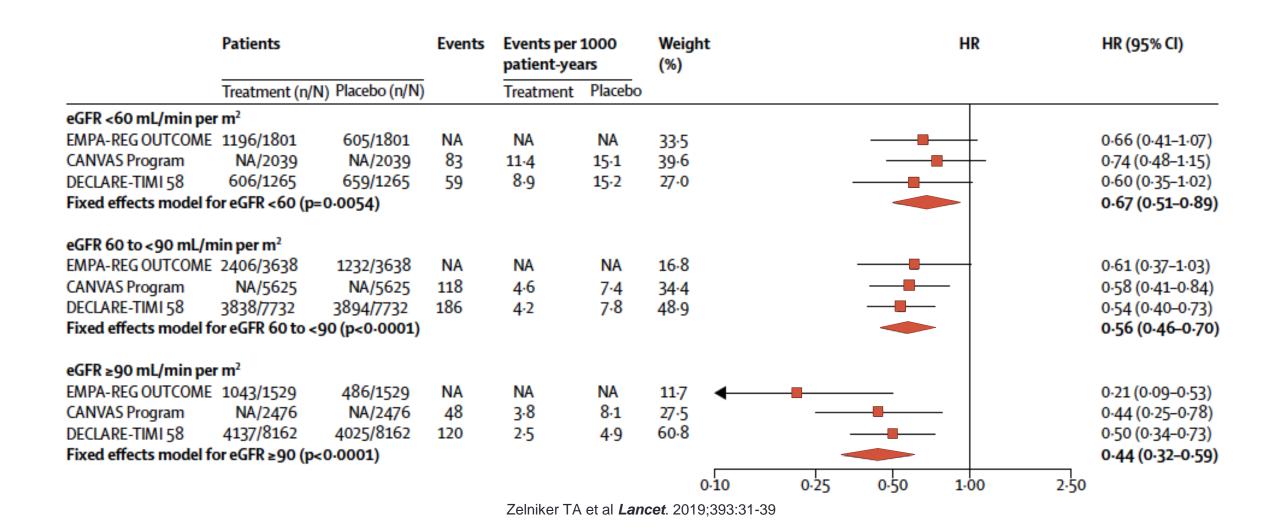


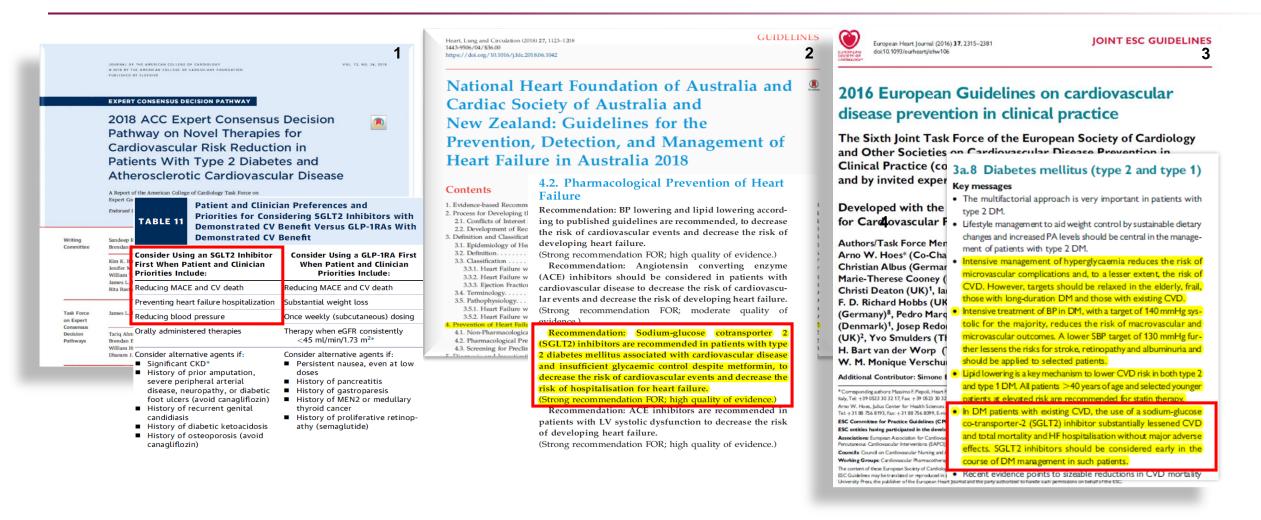

Увеличение утилизации глюкозы

- * Помимо увеличения секреции инсулина, который является основным механизмом действия, агонисты ГПП-1 и ингибиторы ДПП-4 также уменьшают секрецию глюкагона.
- 1. Washburn WN. J Med Chem. 2009;52(7):1785-1794.
- 2. Bailey CJ. Curr Diab Rep. 2009;9(5):360-367.
- 3. Srinivasan BT, et al. Postgrad Med J. 2008;84(996):524–531.
- 4. Rajesh R, et al. Int J Pharma Sci Res. 2010;1(2):139–147.


Инсулиннезависимый механизм

Ингибирование SGLT2




Сводные результаты 3 крупных CVOT исследований по ингибиторам SGLT2 показали преимущество по СС исходам

Сводные результаты 3 крупных CVOT исследований по ингибиторам SGLT2 показали преимущество по почечным исходам

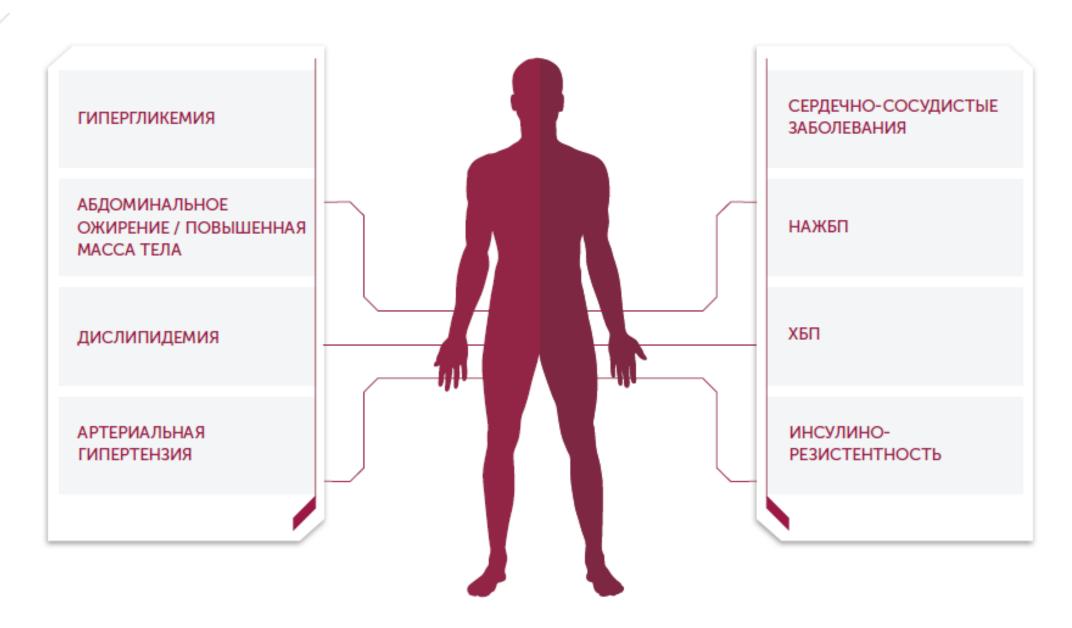
Международные и национальные руководства рекомендуют ингибиторы SGLT2 для профилактики сердечной и почечной недостаточности недостаточности у пациентов с СД2

ACC = American College of Cardiology; ASCVD = atherosclerotic cardiovascular disease; ESC = European Society of Cardiology; HF = heart failure; SGLT2 = sodium—glucose cotransporter 2; T2D = type 2 diabetes.

6.1.6. ПЕРСОНАЛИЗАЦИЯ ВЫБОРА САХАРОСНИЖАЮЩИХ ПРЕПАРАТОВ

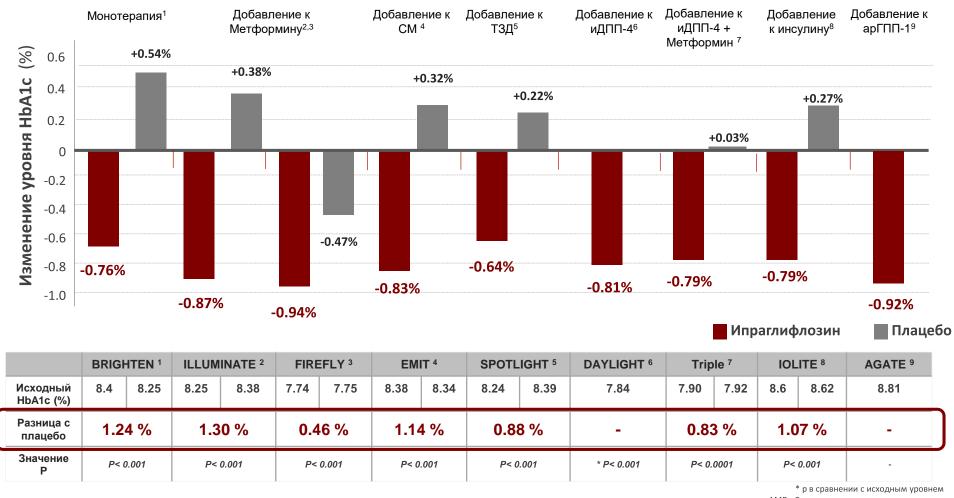
Проблема	Рекомендованы	Безопасны/	He
проолема	(приоритет)	нейтральны	рекомендованы
Наличие	Возможно	• метформин	рекомендованы
сердечно-	эффективны в	• ПСМ	
_	качестве	• иДПП-4	
сосудистых			
факторов риска	первичной	• тзд	
	профилактики:	• акарбоза	
	• иНГЛТ-2	• инсулины	
	• ap[T][]-1		TICO (
Сердечно-	• иНГЛТ-22	• метформин	• ПСМ
сосудистые	• apГТПТ-1	• псм	(глибенкламид)
заболевания	(лираглутид,	• иДПП-4	
атеросклероти-	дулаглутид,	• aplTIII-1	
ческого генеза	семаглутид)	• тзд	
(ACC3) ¹ (кроме		• акарбоза	
хронической		• инсулины	
сердечной			
недостаточности)			
Хроническая	• иНГЛТ-2	 метформин 	• ПСМ
сердечная		• ПСМ	(глибенкламид)
недостаточность		(осторожность	• иДПП-4
		при выраженной	(саксаглиптин)
		декомпенсации)	• тзд
		• иДПП-4	
		• aplTIII-1	
		• акарбоза	
		• инсулины	
		(осторожность на	
		старте)	
ХБП С 1-3а	• иНГЛТ-2	• метформин	• ПСМ
(CKΦ≥45	• apГТПТ-1	• псм [*]	(глибенкламид
мл/мин/1,73 м ²)	(лираглутид,	• иДПП-4	при СКФ < 60
	семаглутид)	• aplTIII-1	мл/мин/1,73 м ²)
	• ПСМ	• ТЗД	,
	(гликлазид MB) ³	• акарбоза	
	,	• инсулины	
ХБП С 36-5		• метформин (до	• метформин
(СКФ <45		ХБП С36)	(при СКФ < 30
мл/мин/1,73 м ²)		• ПСМ (до XБП	мл/мин/1,73 м ²)
		C4)	• ПСМ
1		• иДПП-4	(глибенкламид)
1		• apl TIII-1	• иДПП-4
1		(лираглутид,	(гозоглиптин)
			• иНГЛТ-2
		дулаглутид до ХБП С4)	(ипраглифлозин
		_	при СКФ < 30
		• инсулины	мл/мин/1,73 м ²)
			мл/мин/1,/3 м°)

Министерство здравоохранения Российской Федерации ОО «Российская ассоциация эндокринологов» ФГБУ «Национальный медицинский исследовательский центр эндокринологии»


КЛИНИЧЕСКИЕ РЕКОМЕНДАЦИИ

«АЛГОРИТМЫ СПЕЦИАЛИЗИРОВАННОЙ МЕДИЦИНСКОЙ ПОМОЩИ БОЛЬНЫМ САХАРНЫМ ДИАБЕТОМ»

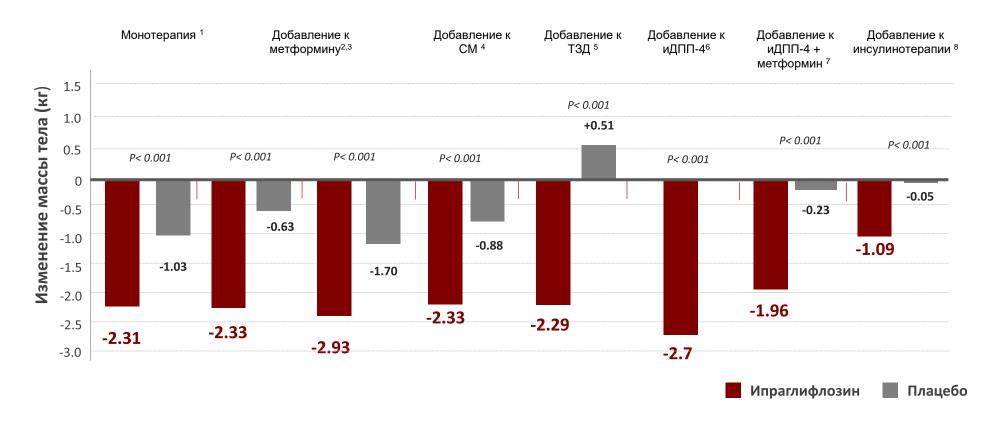
Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова


9-й выпуск (дополненный)

Влияние ипраглифлозина на метаболические нарушения при СД2

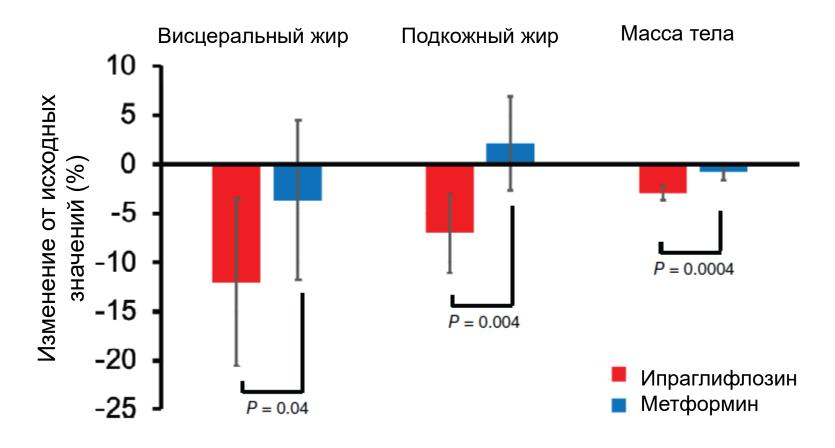
ГИПОГЛИКЕМИЗИРУЮЩЕЕ ДЕЙСТВИЕ ИПРАГЛИФЛОЗИНА

Снижение уровня HbA1c продемонстрировано в монотерапии препаратом Суглат® и комбинированной терапии с другими антидиабетическими препаратами

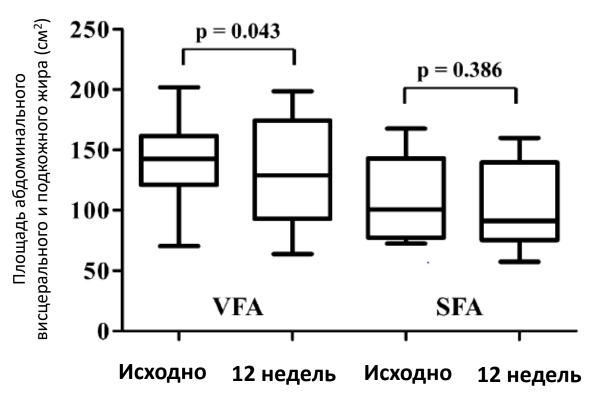


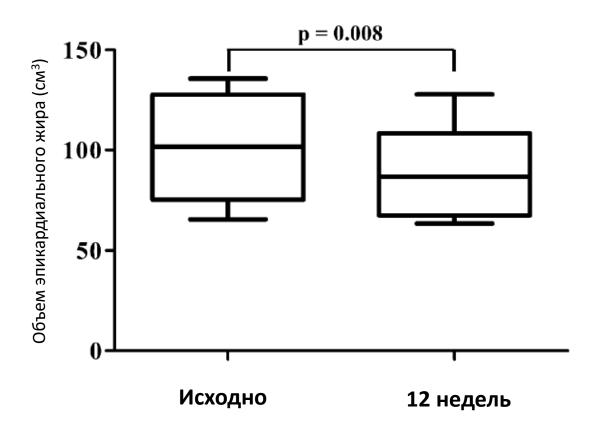
AMD: Скорректированная средняя разница

^{1.} Kashiwagi et al. Diabetol Int, 2015, March 6(1) 8–18. 2. Kashiwagi A et al. Diabetes Obes Metab. 2015 Mar;17(3)304-8. 3. Chieh-Hsiang Lu et alJ Diabetes Investig. 2016 May; 7(3): 366–373. 4. Kashiwagi et al. Diabetes Obes Metab. 2015 Mar;17(3)304-8. 3. Chieh-Hsiang Lu et alJ Diabetes Investig. 2016 May; 7(3): 366–373. 4. Kashiwagi et al. Diabetes Obes Metab. 2015 Mar;17(3)304-8. 3. Chieh-Hsiang Lu et alJ Diabetes Investig. 2016 May; 7(3): 366–373. 4. Kashiwagi et al. Diabetes Obes Metab. 2015 Mar;17(3)304-8. 3. Chieh-Hsiang Lu et alJ Diabetes Investig. 2016 May; 7(3): 366–373. 4. Kashiwagi et al. Diabetes Investig. 2016 May; 7(2015, June 6(2) 125-138. 5. Kashiwagi et al. Diabetology International 2015, June: 6(2): 104–116. 6. Kashiwagi et al. Jpn Pharmacol Ther 2014. 42(12): 941–957.; 7. Han KA et al. Diabetology International 2018 June 4. Diabetes Obes Metab. 2016 Dec;18(12)1207-1216. 9. Hisamitsu Ishihara et al. Diabetes Ther. 2018 Aug; 9(4): 1549-1567.


ВЛИЯНИЕ НГЛТ-2 НА ДИНАМИКУ МАССЫ ТЕЛА

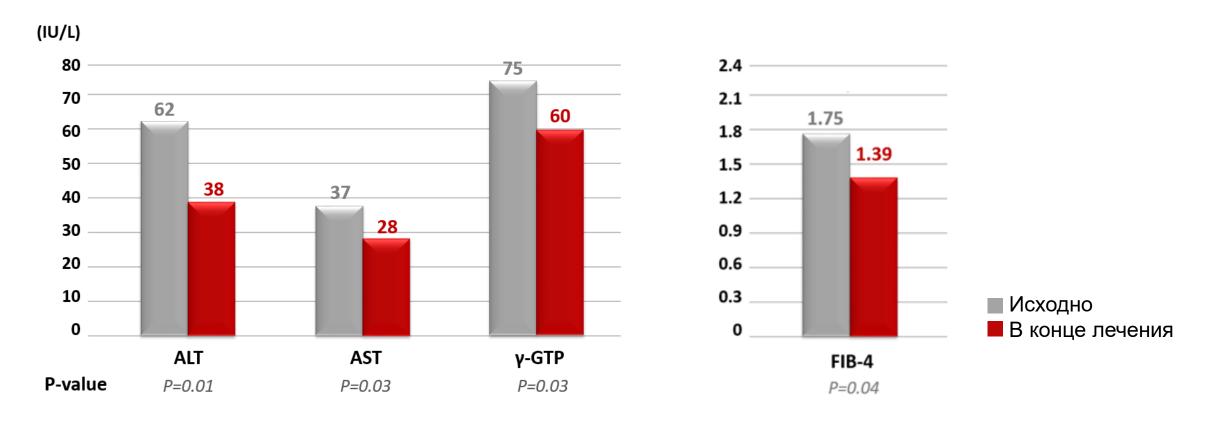
Снижение массы тела продемонстрировано в монотерапии препаратом Суглат[®] и комбинированной терапии с другими антидиабетическими препаратами


^{1.} Kashiwagi et al. Diabetel Int, 2015, March 6(1) 8–18. 2. Kashiwagi A et al. Diabetes Obes Metab. 2015 Mar;17(3)304-8. 3. Chieh-Hsiang Lu et alJ Diabetes Investig. 2016 May; 7(3): 366–373. 4. Kashiwagi et al. Diabetelogy International, 2015, June 6(2) 125-138. 5. Kashiwagi et al. Diabetes Obes Metab. 2015, June: 6(2): 104–116. 6. Kashiwagi et al. Jpn Pharmacol Ther 2014. 42(12): 941–957. 7. Han KA et al. Diabetes Obes Metab. 2018 Jun 4. 8. Ishihara H et al. Diabetes Obes Metab. 2016 Dec;18(12)1207-1216.


Влияние 24-недельной терапии ипраглифлозином на массу тела, объем висцерального и подкожного жира, в сравнении с метформином¹ исследование PRIME-V

^{1.} Koshizaka et al. Diabetes Obes Metab. 2019;21:1990–1995.

Ипраглифлозин способствует уменьшению объёма висцерального и эпикардиального жира¹



VFA - площадь висцерального жира SFA - площадь подкожного жира

ИНГИБИОТРЫ НГЛТ-2 И НЕАЛКОГОЛЬНАЯ ЖИРОВАЯ БОЛЕЗНЬ ПЕЧЕНИ

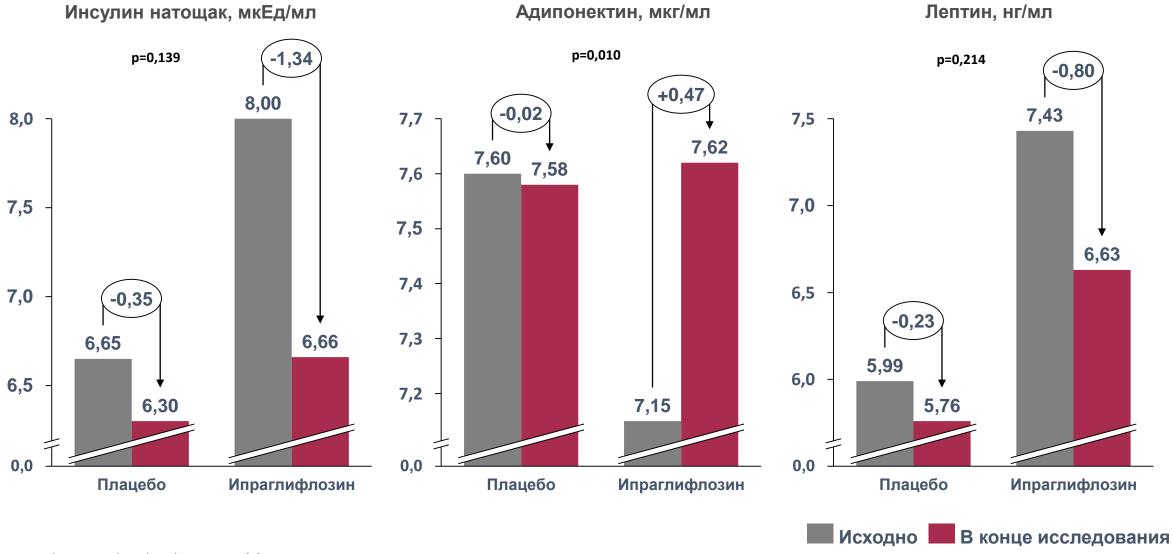
Изменение показателей неалкогольной жировой болезни печени при лечении ипраглифлозином (через 1 год)¹

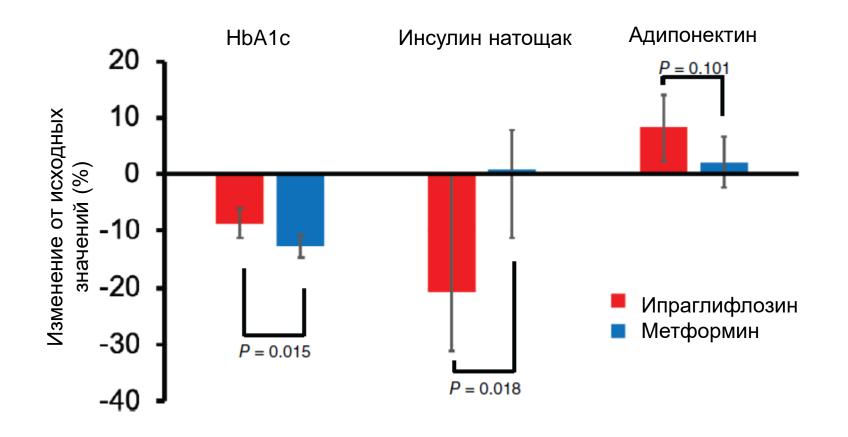
Исследуемая популяция: Пациенты с СД 2 типа, не ответившие на терапию арГПП-1 и иДПП-4

Индекс FIB - ФиброТест (FibroTest) - степень тяжести фиброза печени с переводом в систему METAVIR (F0, фиброз — F1, F2, F3, цирроз печени - F4)

1. Ohki T et al. Clin Drug Investig. 2016 Apr;36(4):313-9.

инсулинорезистентность


ИНСУЛИНОРЕЗИСТЕНТНОСТЬ И СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ


Адаптировано из: Diabetes Care. 1998; 21: 310-314 Pradhan DA et al. JAMA.2001; 286: 327-334.

Динамика уровня инсулина натощак, адипонектина, лептина¹

Исследование ЕМІТ

Влияние 24-недельной терапии ипраглифлозином на уровни HbA1c, инсулина плазмы натощак и адипонектина, в сравнении с метформином исследование PRIME-V

^{1.} Koshizaka et al. Diabetes Obes Metab. 2019;21:1990–1995.

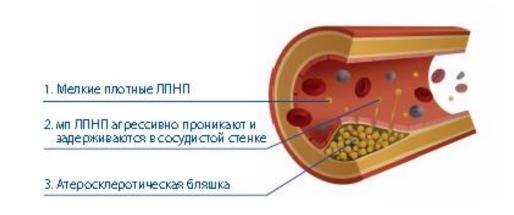
Влияние ипраглифлозина на параметры, отражающие функцию бетаклеток и состояние инсулинорезистентности исследование PRIME-V

	Ипраглифлозин n=48 Изменение от исходного уровня (%)	Метформин n=50 Изменение от исходного уровня (%)	Разница между группами изменение от исходного уровня (%)	95% ДИ	P-value
Инсулин натощак	-20.73	0.85	-18.56	-34.20, -2.80	0.018
нома-β	9.05	26.04	-22.51	-37.79, -2.18	0.029
HOMA-IR	-25.25	0.00	-17.08	-32.86, -1.91	0.024

^{1.} Koshizaka et al. Diabetes Obes Metab. 2019;21:1990–1995.

ДИСЛИПИДЕМИЯ

Особенности дислипидемии при СД 2 типа¹



Инсулинорезистентность ассоциируется с:

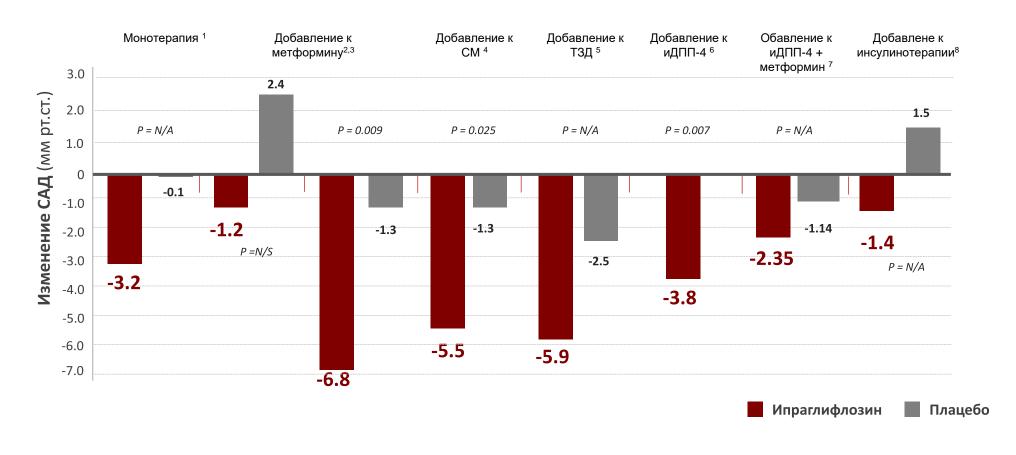
- Повышением уровня циркулирующих СЖК
- ↑ синтеза богатых триглицеридами ЛПОНП
- ↓ катаболизма ЛПОНП
- ↓ циркулирующих ЛПВП
- Гипертриглицеридемией

мпЛПНП увеличивают риск развития ИБС более чем в 3 раза¹

- Агрессивно проникают в сосудистую стенку из-за малых размеров
- Больше подвержены перекисному окислению, легко задерживаются в сосудистой стенке, способствуют развитию дисфункции эндотелия
- Повышают активность тромбоцитов, за счет увеличения синтеза тромбоксана
- Не «связываются» с рецепторами печени, следовательно не выводятся из кровотока, приводя к атерогенезу

Изменения уровней ЛПНП и его фракций при лечении ипраглифлозином¹

Через 12 недель от начала лечения

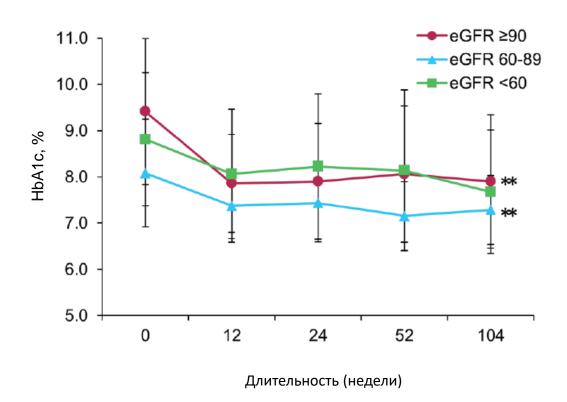

значения P при сравнении двух групп испытуемых получены с помощью непарного t-теста * P = 0,016 по сравнению с контрольной группой.

липопротеины низкой плотности (ЛПНП); бл ЛПНП - большие легкие ЛПНП; мп ЛПНП- мелкие плотные ЛПНП.

1. Yukihiro Bando et al. J Clin Transl Endocrinol. 2016 Jun 16;6:1-7.

АРТЕРИАЛЬНАЯ ГИПЕРТЕНЗИЯ

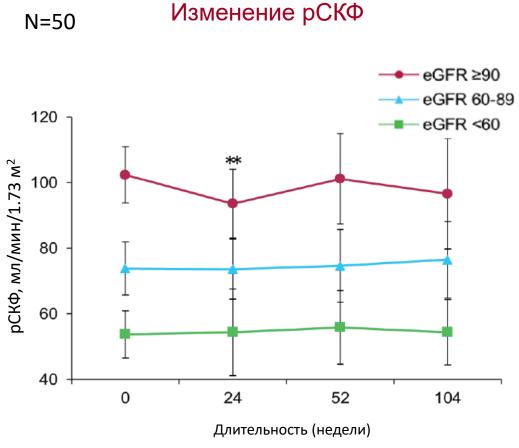
Снижение систолического артериального давления в монотерапии препаратом Суглат[®] и комбинированной терапии с другими антидиабетическими препаратами

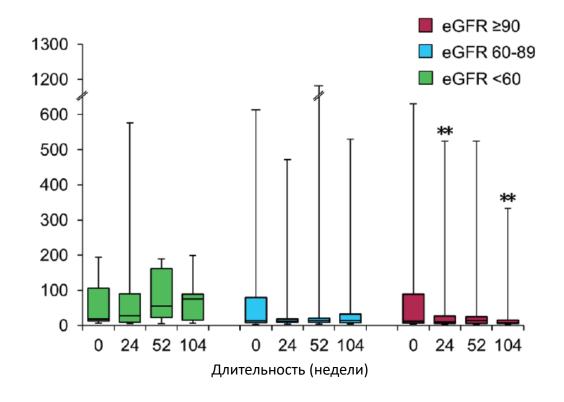


^{1.} Kashiwagi et al. Diabetol Int, 2015, March 6(1) 8–18. 2. Kashiwagi A et al. Diabetes Obes Metab. 2015 Mar;17(3)304-8. 3. Chieh-Hsiang Lu et alJ Diabetes Investig. 2016 May; 7(3): 366–373. 4. Kashiwagi et al. Diabetology International, 2015, June 6(2): 125-138. 5. Kashiwagi et al. Diabetes Obes Metab. 2018 Jun 4. 8. Ishihara H et al. Diabetes Obes Metab. 2016 Dec;18(12)1207-1216.

ХРОНИЧЕСКАЯ БОЛЕЗНЬ ПОЧЕК

Эффективность ипраглифлозина у пациентов с СД 2 типа и ХБП¹ Изменение HbA1c (%)


N=50

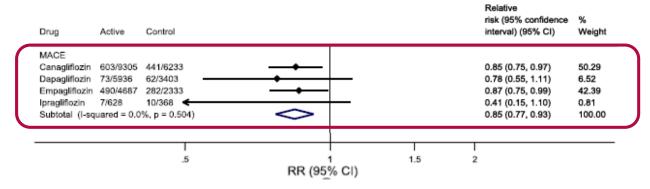

Терапия ипраглифлозином снижала HbA1c у всех групп пациентов, включая тех, у кого была нарушена функция почек

^{1.} Ito D., et al. Long-Term Effects of Ipragliflozin on Diabetic Nephropathy and Blood Pressure in Patients With Type 2 Diabetes: 104-Week Follow-up of an Open-Label Study. J Clin Med Res. 2018;10(9):679-687

Влияние ипраглифлозина на функцию почек у пациентов с СД 2 типа и ХБП¹

Отношение Альбумин/Креатинин в моче

**P < 0.05, **P < 0.01 по сравнению с исходным уровнем (по методу парного тестирования с использованием парного t-теста)


У пациентов с СД 2 типа и диабетической нефропатией ипраглифлозин уменьшает альбуминурию на 69%* без ухудшения функции почек

1. Ito D., et al. Long-Term Effects of Ipragliflozin on Diabetic Nephropathy and Blood Pressure in Patients With Type 2 Diabetes: 104-Week Follow-up of an Open-Label Study. J Clin Med Res. 2018;10(9):679-687

^{*} рассчитано по изменению отношения Альбумин/Креатинин в разовой порции мочи

СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ

Ингибирование SGLT2 ассоциируется со снижением относительного риска больших сердечно-сосудистых событий^{1,2}

- В пре-регистрационных КИ частота МАСЕ на ипраглифлозине (50 мг) составила 1,1% vs. 2,7% на плацебо^{1,2}
- ОР МАСЕ на терапии ипраглифлозином составил 0,41 (95% ДИ [0,150, 1,101]), что соответствует требованиям к долгосрочной СС-безопасности и не требует отдельного КИ²
- По данным объединённого анализа РКИ 2-4 фаз на ипраглифлозине (12,5-100 мг) частота СС-событий составила 1,5%¹
- В РКИ длительностью 52 нед. частота СС-событий на ипраглифлозине (50-100 мг) составила 2,3%¹

^{1.} Report on the Deliberation Results: Suglat Tablets 25 mg and 50 mg (December 10, 2013). Источник: Pharmaceutical Evaluation Division, Pharmaceutical Safety and Environmental Health Bureau Ministry of Health, Labour and Welfare; https://www.pmda.go.jp/files/000206796.pdf. Karin Rådholm, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular disease, death and safety outcomes in type 2 diabetes — A systematic review. Diabetes Research and Clinical Practice 2018; 140: 118-128DOI: https://doi.org/10.1016/j.diabres.2018.03.027

Сердечно-сосудистая безопасность ипраглифлозина анализ долгосрочного применения в реальной клинической практике

- В исследовании STELLA-LONG TERM частота СС-событий на ипраглифлозине составила 0,21%¹
 - МАСЕ (СС-смерть, нефатальный ИМ, нефатальный инсульт) 0,15%
 - МАСЕ расширенный (+ нестабильная стенокардия) 0,18%
 - ИМ 0,05%
 - Инсульт (в т.ч. транзиторная ишемическая атака) 0,11%
 - Госпитализация по поводу СН 0,01% (1 пациент)
 - Фибрилляция предсердий 0,01%
 - Ипраглифлозин имеет приемлемую сердечно-сосудистую безопасность
 - Нет увеличения частоты сердечно-сосудистых событий при увеличении дозировки и длительности лечения ипраглифлозином

^{1.} Maegawa H., et al. Safety and efficacy of ipragliflozin in elderly versus non-elderly Japanese patients with type 2 diabetes mellitus: a subgroup analysis of the STELLA-LONG TERM study. Expert Opinion on Pharmacotherapy, 2018;19(4):327-336, DOI: 10.1080/14656566 2018 1434145

НМИЦ Эндокринологии Минздрава РФ Москва, Дм. Ульянова дом 11 galstyangagik964@gmail.com

Благодарю за внимание!