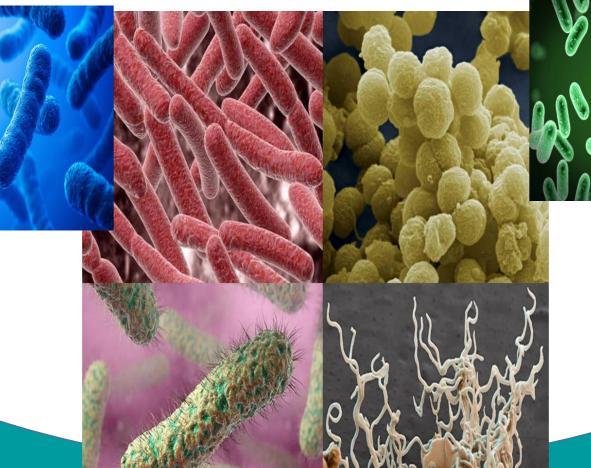


Здравствуйте!

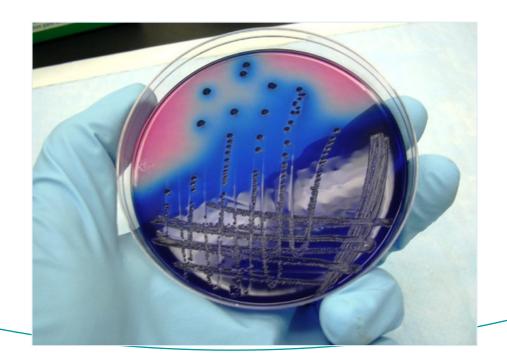

www.micro-lab.org MOCKBA, 2019

Проведение микробиологического анализа на

современном этапе. Качество,

эффективность, скорость, экономия

MOCKBA, 2019


Этапы проведения микробиологического анализа:

- 1. Преаналитика (70-75%)
- 2. Аналитика (важно качество и скорость!)
- 3. Постаналитика

Роль питательных сред в проведении микробиологического анализа

www.micro-lab.org MOCKBA, 2019

Роль питательных сред в проведении микробиологического анализа

- * Питательные среды являются основой микробиологической работы, и их качество нередко определяет результаты всего исследования. Среды должны создавать наилучшие условия для жизнедеятельности микробов (выращивание в искусственных условиях in vitro).
- * Среды бывают разными по своим характеристикам и задачам, которые ставятся перед микробиологом.
- * В клинической микробиологии используются среды для первичного выделения микроорганизмов из образцов, выведения в чистую культуру, для дифференциации и идентификации микроорганизмов, а также для подбора антимикробных препаратов.
- * На современном этапе микробиологических исследований очень важно использовать питательные среды, которые выполняют несколько функций одновременно, дают быстрый и точный результат при выделении и идентификации патогенов.

Нормативные документы:

ГОСТ Р ЕН 12322-2010г.

Изделия медицинские для диагностики in vitro.

Питательные среды для микробиологии. Критерии функциональных характеристик питательных сред.

МУК 4.2.2316-08

Методы контроля бактериологических питательных сред

ПРИКАЗ от 22 апреля 1985 года N 535

Об унификации микробиологических (бактериологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно-профилактических учреждений

Критерии выбора питательных сред

- 1. Качество (ингредиенты, технология производства)
- 2. Многофункциональность, эффективность
- 3. Получение быстрых и достоверных результатов
- 4. Сроки годности, условия хранения. Логистика
- 5. Доступная стоимость

Сотрудничество

Компания Conda основана в 1960 году.

В настоящее время является крупнейшим мировым производителем сред для микробиологии, поставляя свою продукцию более, чем в 122 страны мира.

В России – более 23 лет!

Качество продукции

ISO качество производства.

Некоторые среды изготовлены по известным международным специальным рецептурам и стандартам (Euro Pharm, USP, FDA, APHA, AOAC standards)

Регистрация продукции в РФ

Вся продукция прошла клинические испытания и техническую экспертизу в РФ

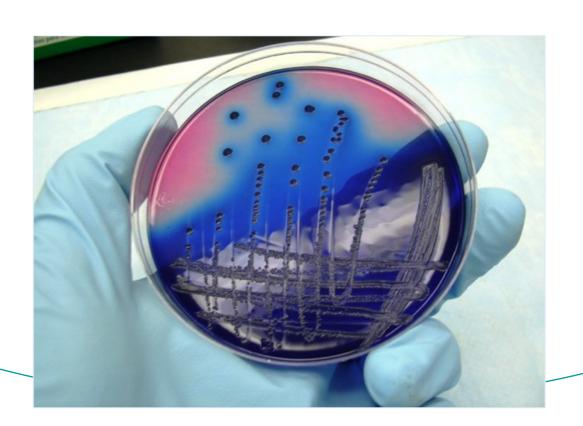
www.micro-lab.org MOCKBA, 2019

Питательные среды для выделения и идентификации:

- Аэромонад
- Бацилл
- Бордетелл
- Бруцелл
- Вибрионов
- Гемофилов
- Грибов и дрожжей
- Кампилобактерий
- Клостридий
- Лактобактерий
- Легионелл
 - Листерий
- **Менингококков**

- **Микобактерий**
- Микоплазм
- Нейссерий
- Псевдомонад
- Стафилококков
- Стрептококков
- Хеликобактерий
- Иерсиний
- Колиформ
- Сальмонелл и шигелл
- Энтерококков
- Других энтеробактерий

Жидкие среды для гемокультур


Кат. Л	№ Название	Фасовка	Назначение
3001	Бульон триптиказеино-соевый с 0,025% SPS, СО2 и вакуумом	10 фл.×50 мл	Выделение <i>аэробных</i> микроорганизмов
3004	Бульон с сердечно-мозговым экстрактом с 0,025% SPS, CO2 и вакуумом	10 фл.×50 мл	Выделение <i>аэробных</i> микроорганизмов
3005	Бульон с сердечно-мозговым	8 фл.×20 мл	Выделение <i>аэробных</i> микроорганизмов
3105	Бульон тиогликолевый жидкий с 0,025% SPS, CO2 и вакуумом	10 фл.×50 мл	Выделение <i>аэробных</i> , <i>анаэробных и факультативных</i> микроорганизмов
3107	Бульон Шадлера с 0,025% SPS, CO2 и вакуумом	10 фл.×50 мл	Выделение <i>анаэробных</i> микроорганизмов

Многофункциональные среды Хромогенные среды

www.micro-lab.org MOCKBA, 2019

Среда маннит-нитратная для определения подвижности

Среда для быстрой идентификации **энтеробактерий** по подвижности, утилизации маннита и восстановлению нитрата до нитрита

Микроорганизмы	Подвижность	Маннит	Нитрат
Escherichia coli ATCC 25922	+	+	+
Klebsiella pneumoniae ATCC 13883	_	+	+
Proteus mirabilis ATCC 25933	+	-	+
Acinetobacter anitratum ATCC 17924	_	_	_

Среда маннит-нитратная для определения подвижности

Среда для быстрой идентификации **энтеробактерий** по подвижности, утилизации маннита и восстановлению нитрата до нитрита

Среда МЮ

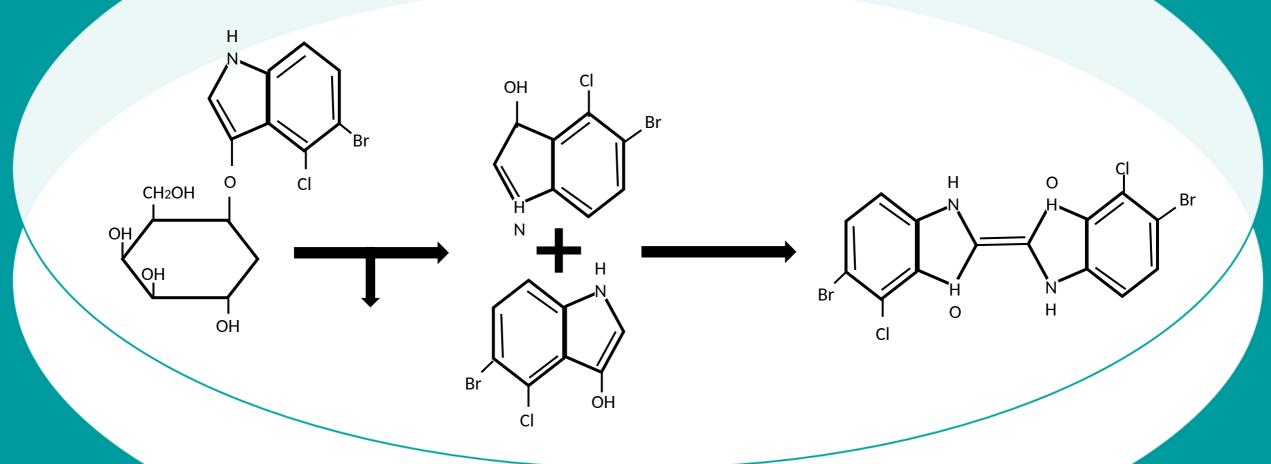
Среда для дифференциации **энтеробактерий** по подвижности, декарбоксилированию орнитина и образованию индола

Микроорганизмы	Рост	Подвижность	Индол	Орнитин (декарбоксилирование)
Escherichia coli	Хороший	+	+	+
ATCC 25922				
Enterobacter aerogenes	Хороший	+	_	+
ATCC 13048				
Klebsiella pneumoniae	Хороший	-	-	_
ATCC 13883				
Proteus mirabilis	Хороший	+	_	+
ATCC 25933				

Агар трехсахарный с железом

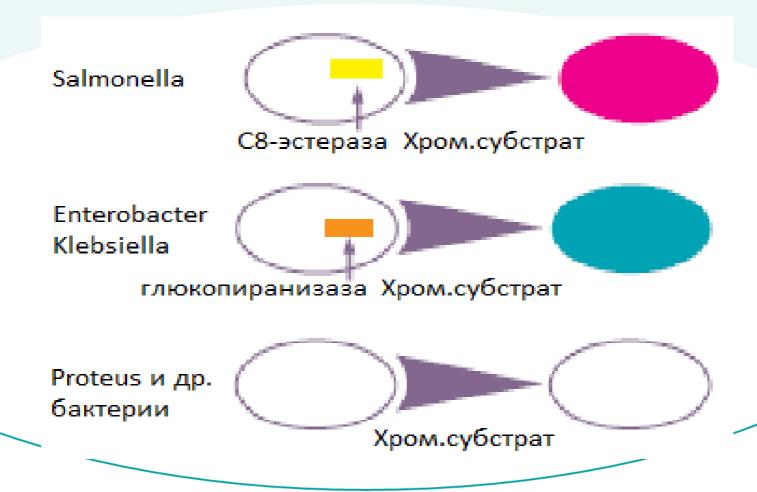
Среда для дифференциации и идентификации энтеробактерий

Агар МакКонки


Среда для выделения и дифференциации энтеробактерий

ХАРАКТЕРИСТИКИ КОЛОНИЙ:

- *E. coli.* красные или розовые; не слизистые; округлые; матовый осадок желчных солей.
 - Salmonella spp. бесцветные, прозрачные или янтарные.
 - Klebsiella spp. крупные, красные, слизистые.
 - Shigella spp. бесцветные, прозрачные или слабо розовые.
 - Enterobacter aerogenes. от розового до красного цвета.
 - Serratia spp. от красного до розового цвета, не слизистые.
- Arizona spp. и Citrobacter spp. бесцветные, прозрачные; красные в случае ферментации лактозы.
 - **Proteus spp.** бесцветные, прозрачные.


Хромогенная реакция

Хромогенная (цветная) реакция

MOCKBA, 2019

Особенности хромогенных сред

- 1. Первичное выделение и выведение чистой культуры микроорганизмов за один посев биоматериала
- 2. Возможность работать с отдельными колониями микроорганизмов
- 3. Селективность сред за счет ингибиторов, входящих в состав хромогенных сред
- 4. Высокая чувствительность сред и хорошая высеваемость биоматериала
- 5. Высокая специфичность взаимодействия хромогенного субстрата с ферментами микроорганизмов
- 6. Определение микроорганизмов до вида/рода по цвету колонии или ареолу вокруг колоний (в случае листерий)
- 7. Идентификация микроорганизмов биоматериала

в течение суток!

Хромогенные среды

Агар хромогенный MRSA

Выделение метициллин-устойчивых Staphylococcus aureus из клинических образцов

Агар хромогенный ТВХ

Выделение и подсчет *E. coli* из продуктов питания и воды

Агар хромогенный для выделения Enterobacter sakazakii

Выделение Enterobacter sakazakii из сухого молока и сухих молочных смесей

Агар хромогенный для кандид

Выделение, дифференциация и быстрая идентификация Candida spp.

Агар хромогенный для сальмонелл

Выделение сальмонелл из клинических образцов, пищевых продуктов и воды

Агар хромогенный для уропатогенных бактерий

Выделение и дифференциация микроорганизмов, вызывающих инфекции мочевых путей

Основа хромогенного агара для листерий

Выделение и подсчет Listeria monocytogenes

Основа хромогенного агара для энтерококков

Выделение и подсчет энтерококков из воды

Среда хромогенная для E.coli

Выделение и идентификация *E.coli* и других колиформ из воды и продуктов питания

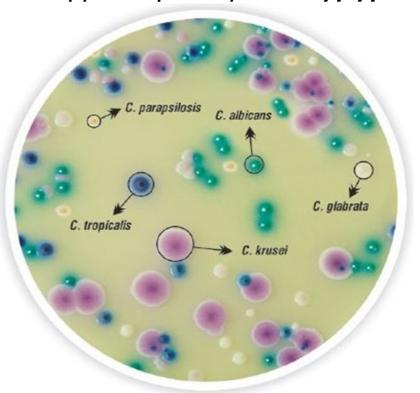
Агар хромогенный для уропатогенных бактерий

Среда для выделения и дифференциации микроорганизмов, вызывающих **инфекции мочевых путей**

Микроорганизмы	Изменение цвета
Escherichia coli ATCC 25922	Розовый
Enterobacter aerogenes ATCC 13048	Темно-синий
Klebsiella pneumonieae ATCC 13883	Темно-синий
Proteus mirabilis ATCC 13315	Светло-коричневый
Staphylococcus aureus ATCC 25923	Бело-кремовый
	(естественная пигментация)
Enterococcus faecalis ATCC 19433	Светло-синий
Pseudomonas aeruginosa ATCC 27853	Янтарный
Salmonella typhi ATCC 6539	Янтарный
Salmonella typhimurium ATCC 14028	Янтарный

Агар хромогенный для уропатогенных бактерий

Среда для выделения и дифференциации микроорганизмов, вызывающих **инфекции мочевых путей**


Результаты - через 18-24 часов

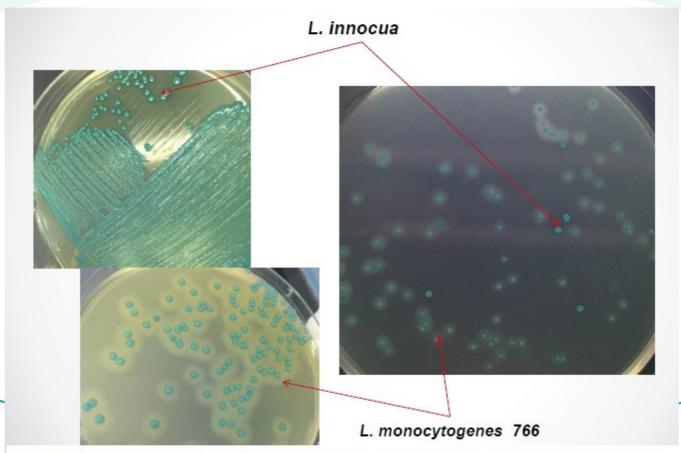
Агар хромогенный для кандид

Среда для селективного выделения, дифференциации и быстрой идентификации **кандид**

www.micro-lab.org MOCKBA, 2019

Агар хромогенный для сальмонелл

Среда для выделения и предварительной идентификации


Salmonella species

Агар хромогенный для листерий с добавками (ALOA)

L.monocytogenes выявляется по наличию вирулентного фактора – фермента фосфатидилинозит-фосфолипазы.
Фосфолипазная активность выявляется по наличию зоны просветления вокруг колоний L.monocytogenes.

Российские среды, готовые к употреблению (в чашках, флаконах, пробирках)

- Шоколадный агар с факторами роста
- Колумбийский агар с НДК и бараньей кровью
- Колумбийский агар с бараньей кровью
- Среда Сабуро с добавками
- Агар Мюллера-Хинтона, с кровью
- Агар Шедлера, с кровью
- Трипказо-соевый агар
- Среда Эндо
- Среда СШ (Плоскирева)
- Элективная солевая среда
- Хромогенный агар для обнаружения и подсчета уропатогенных бактерий
- Хромогенный агар для стафилококков
- Хромогенный агар для сальмонелл
- Агар Макконки
- Arap CLED
- Агар цетримидный
- Arap XLD
- Среда Ловенштейн-Йенсена

Определение чувствительности к антимикробным препаратам

Клинические рекомендации

«Определение чувствительности микроорганизмов к антимикробным препаратам» (Москва, 22.05.2015г.)

EUCAST – европейский комитет по изучению антимикробной чувствительности (компания BIOANALYSE прошла успешно проверку на соответствие)

Широкий спектр антибиотиков, более 150 наименований различной концентрации

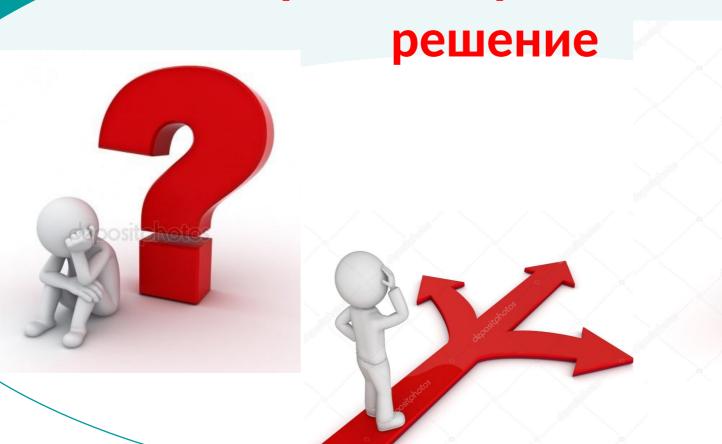
Использование индивидуального картриджа Дозирование просходит при помощи толкателя (триггера)

Российско-европейские ламинарные боксы

Санитарно-эпидемиологические правила СП 1.3.2322-08

Преимущества:

- 1. Небольшой вес, рабочая камера и стол транспортируются отдельно
- 2. Недорогая цена, наличие РУ
- з. Переднее "стекло" из поликарбоната, не пропускающего УФ-излучения
- 4. Фиксация передней стенки на любом уровне
- 5. "Стекло" полностью закрывает камеру в нерабочем состоянии
- 6. Простая замена фильтров, ламп
- 7. Простое меню на русском языке
- 8. Изготовление боксов разных размеров
- 9. Столешница может быть из разных металлов, секционной


Спасибо за внимание

Всего доброго и хорошего!

Примите правильное

www.micro-lab.org MOCKBA, 2019