

ІІІ МЕЖРЕГИОНАЛЬНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

«РАДИОЛОГИЯ В ОНКОЛОГИИ – ФОКУС НА МАММОЛОГИЮ И ТОРАКАЛЬНУЮ РАДИОЛОГИЮ»

15 марта 2018, г. Нижний Новгород

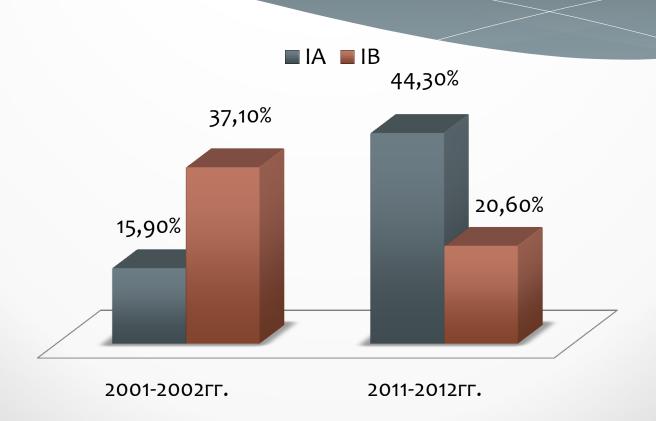
МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России

Применение трехмерного компьютерного моделирования легочных сосудов при планировании видеоассистированных анатомических резекций легкого

Халимон А.И., Рубцова Н.А., Пикин О.В., Амиралиев А.М.

Основные задачи

- Радикальность выполнения оперативного вмешательства
- Уменьшение количества осложнений
- Сокращение времени послеоперационного периода
- Сохранение качества жизни пациента



Актуальность сегментэктомии

- Ранняя диагностика: ↑GGO, ↑ Т1аNoMo
- ↑ пожилые пациенты
- ↑ коморбидность
- ↑ первичная множественность опухолей легкого

UpToDate/Management of stage I and stage II non-small cell lung cancer. Howard J West, MD, Eric Vallières, MD, FRCSC, Steven E Schild, MD. Literature review current through: Sep 2015. | This topic last updated: sep 16, 2015.

Стадия на момент операции

W. Walker. Society for Cardiothoracic Surgery Annual Meeting, Edinburgh, 2014

Показания для проведения сегментэктомии:

- Периферический немелкоклеточный рак легкого при максимальном диаметре опухолевого узла ≤ 2 см и одном из следующих условий: AIS, узел состоит ≥ 50% из GGO, длительное время удвоения (≥400 дней) (NCCN NSCLC GL 3.2018)
- Метастазы химиорезистентных опухолей с топикой, не позволяющей выполнить атипичную резекцию Ro
- Сниженный функциональный респираторный резерв 30% < ОФВ 1 < 40% (VO2 max в пределах от 10 до 20 мл/кг/мин) и другие коморбидные состояния, являющиеся противопоказаниями к лобэктомии

HMPЛ IA, T1aNoMo

СЕГМЕНТЭКТОМИЯ VS ЛОБЭКТОМИЯ

(мета-анализ 22 публикаций)

При периферическом НМРЛ с максимальным диаметром

≤ 2см - общая и канцер-специфическая выживаемость

эквивалентны

Сегментэктомия при НМРЛ ІА стадии

Авторы	Публикация	Число пациентов	Диаметр опухоли	5-летняя выж-ть
Okada M,	Effect of tumor size on prognosis in patients with	258	≤2 cm	96.7%
Nishio W, Sakamoto T,	non-small cell lung cancer: the role of segmentectomy as a type of lesser resection. J		2–3 cm	84.6%
et al.	Thorac Cardiovasc Surg 2005;129:87–93		>3 cm	62.9%
Okumura M, Factors associated with outcome of segmentectomy for non-small cell lung cancer:		144	≤2 cm	83%
Ideguchi K, et al.	long-term follow-up study at a single institution in Japan. Lung Cancer 2007;58:231–237.		>2 cm	58%
Iwata H.	Feasibility of segmental resection in non-small-cell lung cancer with ground-glass opacity. Eur J Cardiothorac Surg Sept 2014; 46:375–379	87	GGO 100% (GGO>50%)≤2cm Solid < 1cm	91,2%
Motoki Y.	Survival of 1737 lobectomy-tolerable patients who underwent limited resection for cStage IA nonsmall-cell lung cancer. Eur J Cardiothorac Surg, Jan 2015; 47: 135 - 142	1094	≤2 cm	94%

Сегментэктомия при НМРЛ ІА стадии

Авторы	Публикация	Число пациентов	Диаметр опухоли	5-летняя выж-ть
Okada M,	Effect of tumor size on prognosis in patients with non-small cell lung cancer: the role of segmentectomy as a type of lesser resection. J	258	≤2 cm	96.7%
Nishio W, Sakamoto T,			2–3 cm	84.6%
et al.	Thorac Cardiovasc Surg 2005;129:87–93		>3 cm	62.9%
Okumura M, Goto M,	· · · · · · · · · · · · · · · · · · ·		≤2 cm	83%
Ideguchi K, et al.	long-term follow-up study at a single institution in Japan. Lung Cancer 2007;58:231–237.		>2 cm	58%
Iwata H.	Feasibility of segmental resection in non-small-cell lung cancer with ground-glass opacity. Eur J Cardiothorac Surg Sept 2014; 46:375–379	87	GGO 100% (GGO>50%)≤2cm Solid < 1cm	91,2%
Motoki Y.	Survival of 1737 lobectomy-tolerable patients who underwent limited resection for cStage IA non-small-cell lung cancer. Eur J Cardiothorac Surg, Jan 2015; 47: 135 - 142	1094	≤2 cm	94%

НМРЛ T1aNoMo

СЕГМЕНТЭКТОМИЯ VS ЛОБЭКТОМИЯ

(мета-анализ 22 публикаций)

При периферическом НМРЛ максимальным диаметром

≤ 2см общая и канцер-специфическая выживаемость

эквивалентна

СЕГМЕНТЭКТОМИЯ

Bao F, Ye P, Yang Y, Wang L, Zhang C, Lv X, Hu J. Segmentectomy or lobectomy for early stage lung cancer: a metaanalysis. Eur J Cardiothorac Surg. 2014 Jul;46(1):1-7.

НМРЛ Т1Ь НОМО

СЕГМЕНТЭКТОМИЯ VS ЛОБЭКТОМИЯ

При периферическом НМРЛ с максимальным диаметром >2cm и ≤ 3cm частота возникновения рецидива и метастазирования составляет:

45% vs 15% лобэктомия

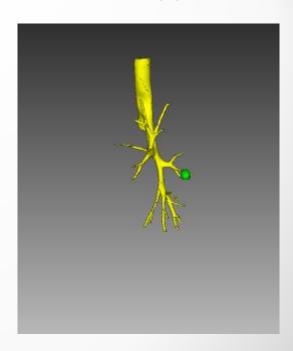
Hiroyuki Ogawa, Kazuya Uchino, et al. Outcomes of segmentectomy for cT1bNoMo lung adenocarcinoma and squamous cell carcinoma: a possible association with pathological invasion. Eur J Cardiothorac Surg, Jul 2015; 48: 77 - 82

Критерии выбора хирургического доступа и объема резекции при метастатическом поражении легких

VATS-атипичная резекция – ПРЕДПОЧТИТЕЛЬНО

- Солитарный/единичные метастазы (более 3 → торакотомия)
- Диаметр ≤ 3 см (> 3 см → торакотомия)
- Клиренс края резекции ≥ 1 см (< 1 см→ торакотомия)
- Глубина ≤ 1/3 легочной паренхимы (центральнее → сегментэктомия/лобэктомия)

UpToDate/Surgical resection of pulmonary metastases: Benefits, indications, preoperative evaluation and techniques. Michael T Jaklitsch, MD, Bryan M Burt, MD, James R Jett, MD, Carlos E Bravo Iniguez, MD. Literature review current through: Sep 2015. | This topic last updated: oct 7, 2015.


MPR MIP

VRT

3D-модель

Необходимая информация для хирурга

- Количество выявленных узловых образований в легких
- Размеры
- Локализация
- Взаимоотношения с окружающими анатомическими структурами
- Бронхо- и ангиоархитектоника в области планируемого

оперативного вмешательства

European Journal of Cardio-thoracic Surgery 34 (2008) 875-877

EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY

www.elsevier.com/locate/ejcts

Preoperative assessment of the pulmonary artery by three-dimensional computed tomography before video-assisted thoracic surgery lobectomy

Kenjiro Fukuhara*, Akinori Akashi, Shigeru Nakane, Emiko Tomita

Department of General Thoracic Surgery, Takarazuka Municipal Hospital, 4-5-1 Kohama, Takarazuka, Hyogo 665-0827, Japan Received 18 March 2008; received in revised form 4 July 200 Ann Thorac Cardiovasc Surg 2013; 19: 1-5

Review Article

Three Dimensional Computed Tomography Lung Modeling is Useful in Simulation and Navigation of Lung Cancer Surgery

ORIGINAL ARTICLE

Ikeda, MD, PhD,¹ Akinobu Yoshimura, MD, PhD,² Masaru Hagiwara, MD,¹ cata, MD, PhD,³ and Hisashi Saji, MD, PhD¹

European Journal of Cardio-Thoracic Surgery 46 (2014) e120-e126 doi:10.1093/ejcts/ezu375 Advance Access publication 23 October 2014

High-quality 3-dimensional image simulation for pulmonary lobectomy and segmentectomy: results of preoperative assessment of pulmonary vessels and short-term surgical outcomes in consecutive patients undergoing video-assisted thoracic surgery[†]

Masaru Hagiwara^a, Yoshihisa Shimada^{a,*}, Yasufumi ¹¹ Hideyuki Furumoto^a, Soichi Akata^b, Masatoshi Kakil ¹ Hisashi Sajii^c and Norih

Ann Thorac Cardiovasc Surg 2014; 20: 407–409

Case Report Online December 26, 2012 doi: 10.5761/atcs.cr.12.02042

doi: 10.5761/atcs.ra.12.02174

Computed Tomography Guided Thoracoscopic Segmentectomy for Lung Cancer with Variant Bronchus

Tadashi Akiba, MD, PhD, FACS,¹ Toshiaki Morikawa, MD, PhD,² Hideki Marushima, MD, PhD,¹ Takeo Nakada, MD,¹ Takuya Inagaki, MD,¹ and Takao Ohki, MD, PhD²

European Journal of Cardio-thoracic Surgery 34 (2008) 875-877

EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY

www.elsevier.com/locate/ejcts

Preoperative assessment of the pulmonary artery by three-dimensional computed tomography before video-assisted thoracic surgery lobectomy

Kenjiro Fukuhara*, Akinori Akashi, Shigeru Nakane, Emiko Tomita

Department of General Thoracic Surgery, Takarazuka Municipal Hospital, 4-5-1 Kohama, Takarazuka, Hyogo 665-0827, Japan Received 18 March 2008; received in revised form 4 July 2008; accepted 14 July 2008; Available online 15 August 2008

139/146

doi: 10.5761/atcs.ra.12.021

Article

Three Dimensional Computed Tomography Lung Modeling is Useful in Simulation and Navigation of Lung Cancer Surgery

Table 1
Comparison between 3D-CT angiography and intraoperative findings of PA branches

Side of thoracotomy	No. of patients	No. of PA branches	Identification rate (%)	
		Preoperative 3D-CT	Operative findings	
Right	28	63	67	94.0
Left	21	76	79	96.2
Total	49	139	146	95.2

GOI: 1U.3 / D1/8ICS.CT. 1 Z.UZU4 Z

Hisashi Saji^c and Norihiko Ike**©**ase

Report

Computed Tomography Guided Thoracoscopic Segmentectomy for Lung Cancer with Variant Bronchus

Tadashi Akiba, MD, PhD, FACS,¹ Toshiaki Morikawa, MD, PhD,² Hideki Marushima, MD, PhD,¹ Takeo Nakada, MD,¹ Takuya Inagaki, MD,¹ and Takao Ohki, MD, PhD²

European Journal of Cardio-thoracic Surgery 34 (2008) 875-877

EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY

www.elsevier.com/locate/ejcts

Preoperative assessment of the pulmonary artery by three-dimensional computed tomography before video-assisted thoracic surgery lobectomy

Kenjiro Fukuhara*, Akinori Akashi, Shigeru Nakane, Emiko Tomita

Department of General Thoracic Surgery, Takarazuka Municipal Hospital, 4-5-1 Kohama, Takarazuka, Hyogo 665-0827, Japan Received 18 March 2008; received in revised form 4 July 200 Ann Thorac Cardiovasc Surg 2013; 19: 1-5

Review Article

Three Dimensional Computed Tomography Lung Modeling is Useful in Simulation and Navigation of Lung Cancer Surgery

ORIGINAL ARTICLE

Ikeda, MD, PhD,¹ Akinobu Yoshimura, MD, PhD,² Masaru Hagiwara, MD,¹ cata, MD, PhD,³ and Hisashi Saji, MD, PhD¹

European Journal of Cardio-Thoracic Surgery 46 (2014) e120-e126 doi:10.1093/ejcts/ezu375 Advance Access publication 23 October 2014

High-quality 3-dimensional image simulation for pulmonary lobectomy and segmentectomy: results of preoperative assessment of pulmonary vessels and short-term surgical outcomes in consecutive patients undergoing video-assisted thoracic surgery[†]

Masaru Hagiwara^a, Yoshihisa Shimada^{a,*}, Yasufumi ¹¹ Hideyuki Furumoto^a, Soichi Akata^b, Masatoshi Kakil ¹ Hisashi Sajii^c and Norih

Ann Thorac Cardiovasc Surg 2014; 20: 407–409

Case Report Online December 26, 2012 doi: 10.5761/atcs.cr.12.02042

doi: 10.5761/atcs.ra.12.02174

Computed Tomography Guided Thoracoscopic Segmentectomy for Lung Cancer with Variant Bronchus

Tadashi Akiba, MD, PhD, FACS,¹ Toshiaki Morikawa, MD, PhD,² Hideki Marushima, MD, PhD,¹ Takeo Nakada, MD,¹ Takuya Inagaki, MD,¹ and Takao Ohki, MD, PhD²

Table 3: Identification rate of the 3D imaging in pulmonary artery branches according to type of surgery

Variables	No. of patients	No. of PABs involved in resection		Identification rate (%)		Undetected PABs
	(%)	3D images	Surgical findings	A per-vessel basis	A per-patient basis	(no. of patients)
Overall	124 (100)	309	316	97.8	94.4	1 mm (1)/2 mm (6)
Type of surgery	, ,					
Right upper lobectomy	38 (31)	84	89	94.4	86.8	1 mm (1)/2 mm (4)
Right middle lobectomy	13 (10)	24	24	100	100	-
Right lower lobectomy	27 (22)	55	55	100	100	-
Right middle and lower lobectomy	1 (1)	2	2	100	100	-
Left upper lobectomy	26 (21)	99	101	98.0	92.3	2 mm (2)
Left lower lobectomy	14 (11)	33	33	100	100	-
Segmentectomy	5 (4)	12	12	100	100	-
Uncommon PAB pattern	15 (12)	50	50	100	100	_

PABs: pulmonary artery branches.

European Journal of Cardio-Thoracic Surgery 46 (2014) e120-e126 doi:10.1093/ejcts/ezu375 Advance Access publication 23 October 2014 ORIGINAL ARTICLE

High-quality 3-dimensional image simulation for pulmonary lobectomy and segmentectomy: results of preoperative assessment of pulmonary vessels and short-term surgical outcomes in consecutive patients undergoing video-assisted thoracic surgery[†]

Masaru Hagiwara^a, Yoshihisa Shimada^a*, Yasufumi Kato^a, Kimitoshi Nawa^a, Yojiro Makino^a, Hideyuki Furumoto^a, Soichi Akata^a, Masatoshi Kakihana^a, Naohiro Kajiwara^a, Tatsuo Ohira^a, Hisashi Saji^c and Norihiko Ikeda^a

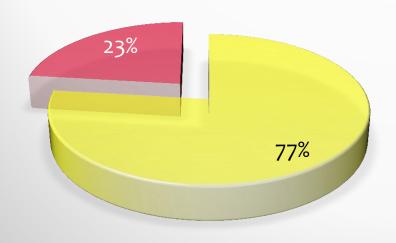
eda, MD, PhD,¹ Akinobu Yoshimura, MD, PhD,² Masaru Hagiwara, MD, a, MD, PhD,³ and Hisashi Saji, MD, PhD¹

309/316

Online December 26, 2012 doi: 10.5761/atcs.cr.12.02042

Report

Computed Tomography Guided Thoracoscopic Segmentectomy for Lung Cancer with Variant Bronchus


Tadashi Akiba, MD, PhD, FACS,¹ Toshiaki Morikawa, MD, PhD,² Hideki Marushima, MD, PhD,¹ Takeo Nakada, MD,¹ Takuya Inagaki, MD,¹ and Takao Ohki, MD, PhD²

02174

Материалы и методы

61 сегментэктомия/52 пациента

■ Метастазы
■ НМКРЛ IA

32/27 верхние 29/25 нижние

Материалы и методы

- Сканнер Toshiba Aquilion Prime (80 рядов): 100 kV, ^{SURE}Exposure 3D SD 12,50, коллимация 80х0,5мм, время ротации 0,35, питч-фактор 1,388, AIDR 3D, реконструкция 1,0мм/0,8мм, фильтр Body Std. Volume
- Двухколбовый инжектор Stellant MedRad КВ - 370-400 мг йода/мл, объем 60/30мл NaCl 0,9%, скорость 5мл/с
- Модификация двухфазной МСКТ-ангиопульмонографии SUREStart ROI на просвет ВПВ (voice timing 3 c, триггер +140 HU) вторая фаза- через 10 с после окончания первой

Материалы и методы

РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19) **RU**(11) **2 600 282**(13) **C2**

(51) ΜΠΚ **A61B 6/03** (2006.01) **G06T 15/00** (2011.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2015124346/14, 23.06.2015

(24) Дата начала отсчета срока действия патента: 23.06.2015

Приоритет(ы):

(22) Дата подачи заявки: 23.06.2015

(43) Дата публикации заявки: 20.11.2015 Бюл. № 32

(45) Опубликовано: 20.10.2016 Бюл. № 29

(56) Список документов, цитированных в отчете о поиске: NISHIYAMA H.et al. Separation of pulmonary artery and pulmonary vein using 2-phase chest CT for video-assisted thoracic lobectomy// ECR 2013, С-1396. RU 2532882 С1, 10.11.2014. US 2010011386 Al, 0605.2010. US 20070167718 A1, 19.07.2007. FALCHINI M.et al. 3-D Segmentation Algorithm of Small Lung Nodules in Spiral CT Images// IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 1, JAN 2008, pp.7-19.

О Адрес для переписки:

125284, Москва, 2-й Боткинский пр-д, 3, Московский научно-исследовательский онкологический институт имени П.А. Герцена-филиал ФГБУ "НМИРЦ" Министерства здравоохранения Российской Федерации

(72) Автор(ы):

Каприн Андрей Дмитриевич (RU), Рубцова Наталья Алефтиновна (RU), Халимон Александр Игоревич (RU), Пузаков Кирилл Борисович (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России) (RU)

C 2

 $\overline{}$

6

0

0

N

N

(54) СПОСОБ ПЛАНИРОВАНИЯ АНАТОМИЧЕСКИХ СУБЛОБАРНЫХ РЕЗЕКЦИЙ ЛЕГКИХ У БОЛЬНЫХ С ПЕРИФЕРИЧЕСКИМИ ОБЪЕМНЫМИ ОБРАЗОВАНИЯМИ НА ОСНОВЕ КТ-АНГИОПУЛЬМОНОГРАФИИ

(57) Реферат:

2

2

00

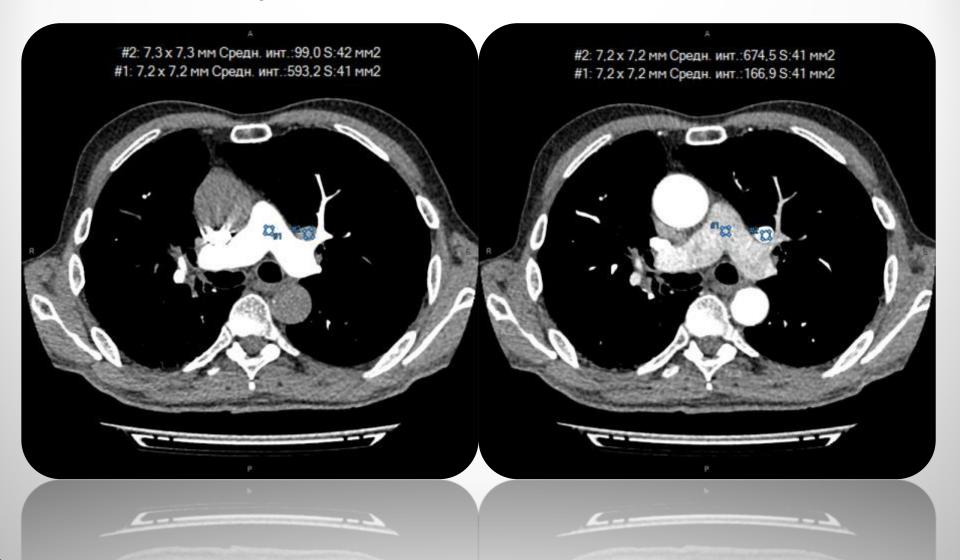
2

0

0

Изобретение относится к медицине, лучевой диагностике и может применяться в рамках персонализации в планировании хирургического приема у больных с периферическими объемными образованиями летких (ООЛ). Способ трехмерной реконструкции броихососудистых структур у больных с ООЛ на основе КТ-ангиопульмонографии включает проведение КТ в режиме двухфазиого спирального сканирования. Скан болюс-трекинга устанавливают на уровне, соответствующем инжиему контуру дуги аорты.

Выделяют фрагмент аксиальной томограммы (ROI), где будут отслеживать плотность в режиме реального времени, в области просвета верхней полой вены, на уровне ее максимального диаметра, с сохранением автоматического старта сканирования во время первой фазы при достижении внутри ROI значений коэффициента оснабления рентгеновского излучения (RO) +140HU. При локализации ООЛ в верхних отделах легких сканирование производят в краннокатдальном направления, при локализации окраниза производят в

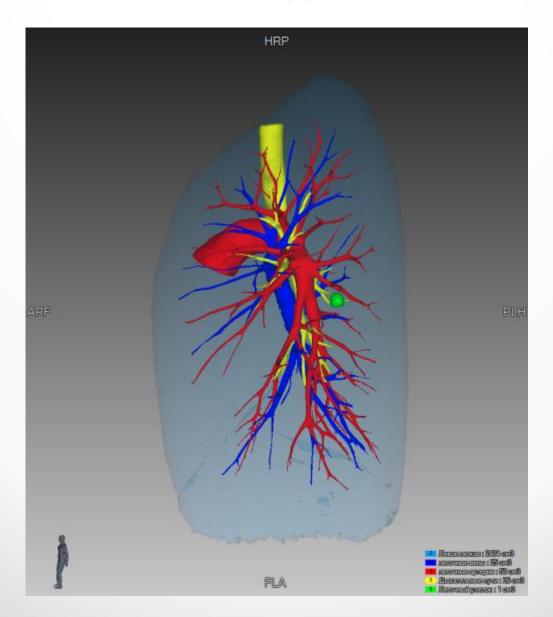

Некоторые методики сосудистой сепарации с использованием КТ-ангиопульмонографии

Авторы	Публикация	Основа методики
H. Moriya	3DCTA for Pulmonary Artery/Vein Separation - Simulation Prior to Lung Lobectomy by Thoracoscopic Surgery (poster ECR 2013)	Использование тест- болюса, расчет индивидуального времени задержки
H. Nishiyama, K. Omoto, Y. Nishiyama, T. Matsuda, T. Kido, H. Tagashira, M. Yoshimoto, T. Mochizuki	Toon/JP Separation of Pulmonary Artery and Pulmonary Vein Using 2- Phase Chest CT for Video-Assisted Thoracic Lobectomy (poster ECR 2013)	Динамическое импульсное сканирование с использованием 320-рядной детекторной системы

Myrian v1.18 (Intrasense)

Pulmo phase

Aortic phase


Pulmo phase

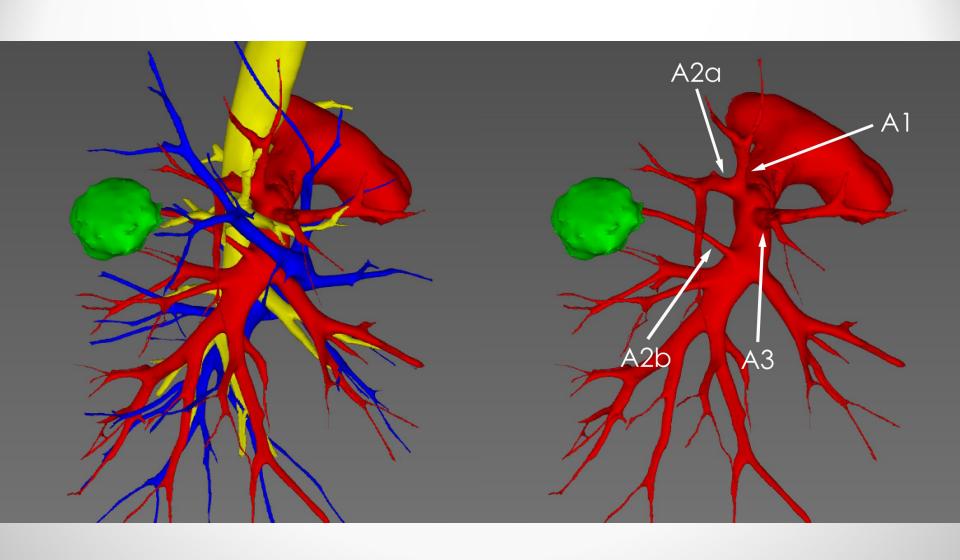
Aortic phase

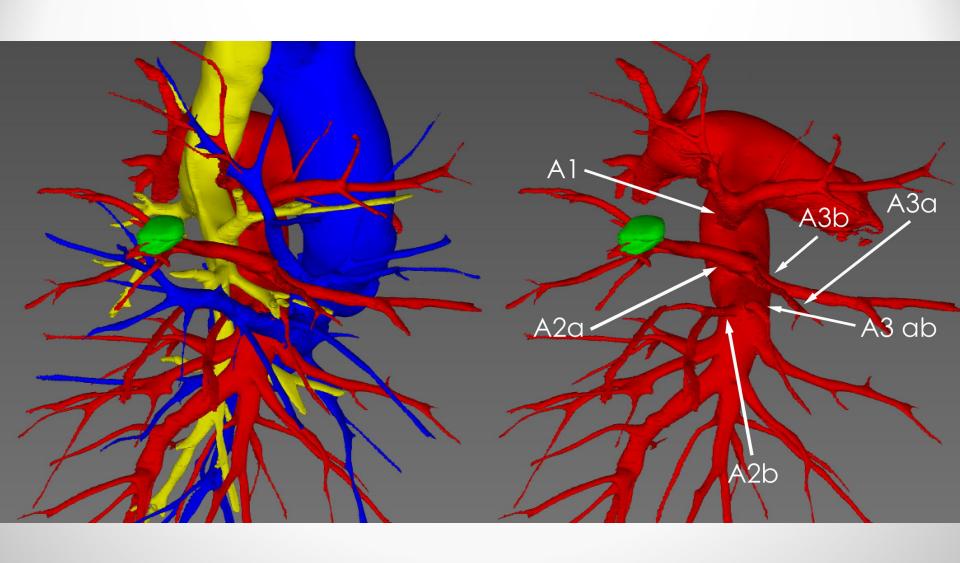
3D-модель

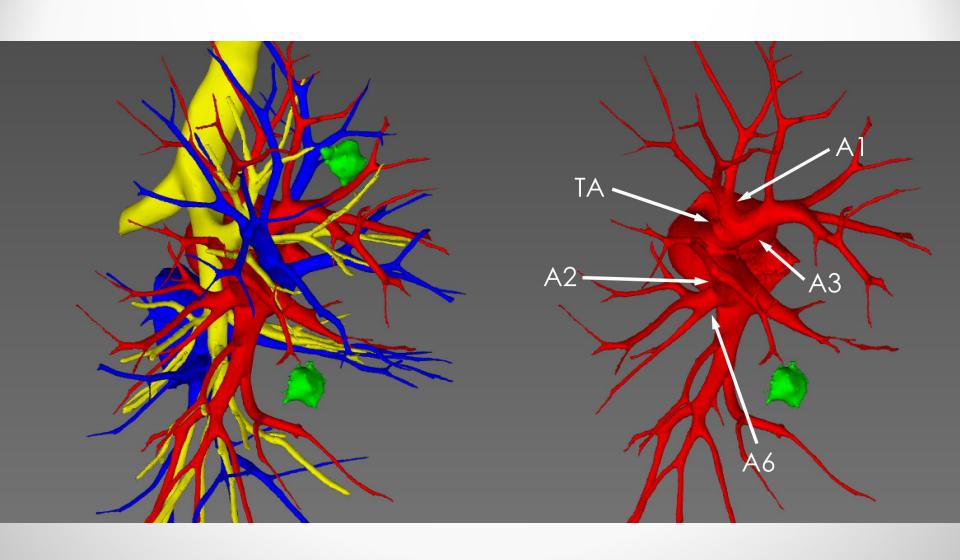
Собственные результаты

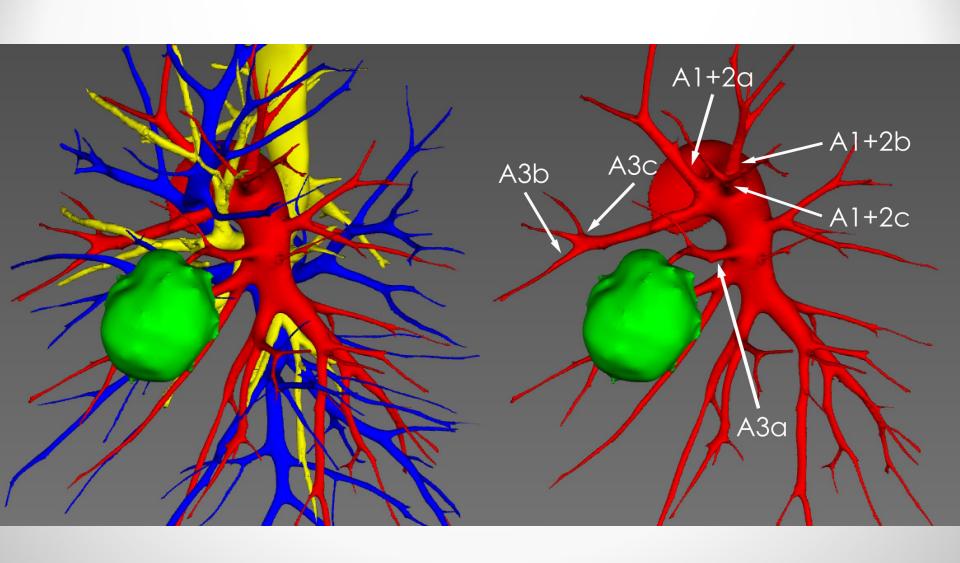
Опорируаная	Количеств	Количество обна	Частота выявления	
Оперируемая доля	о операций	При 3D- моделировании	При хирургической ревизии	ВЛА* на 3D моделях (%)
Правая верхняя	16	66	71	92,9
Правая нижняя	15	64	64	100
Левая верхняя	16	66	69	95,6
Левая нижняя	14	57	57	100
Общее	52	253	261	96,9

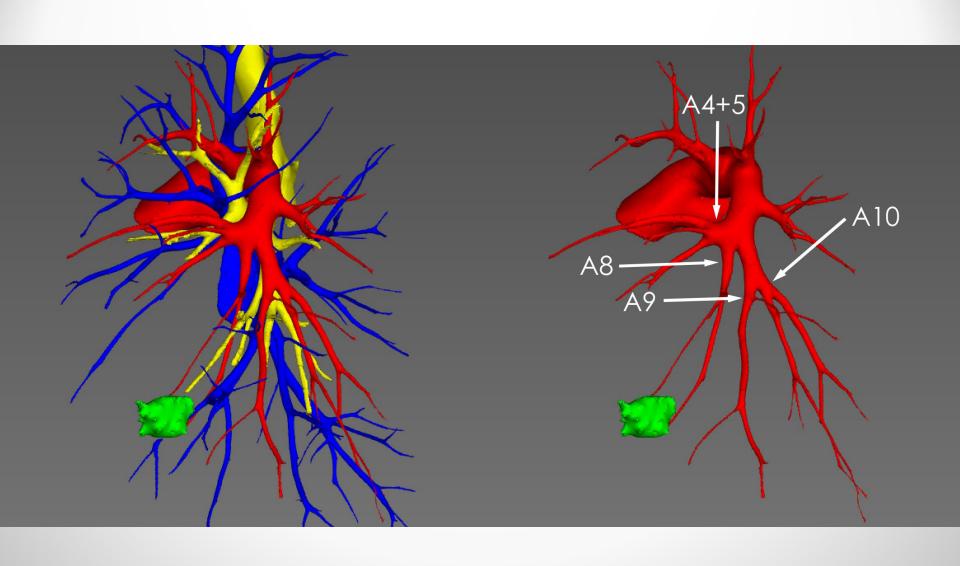
^{*}ВЛА – ветви легочных артерий


Собственные результаты


Опорируомая	Количеств о операций	Количество обна	Частота выявления	
Оперируемая доля		При 3D- моделировании	При хирургической ревизии	ВЛА* на 3D моделях (%)
ДОЖЬ	HOOTP	ИЦАТЕЛЫ	ные резу	ЛЬТАТЫ
Прав <i>т</i> ниж ная	1AM	ETP B	ЛА ⁶⁴ 1-2	MM
Левая верхняя	16	66	69	95,6
Левая нижняя	14	57	57	100
Общее	52	253	261	96,9


^{*}ВЛА – ветви легочных артерий


Преимущества сегментэктомии с использованием трехмерного моделирования


- Более щадящий хирургический доступ
- Возможность более щадящего объема вмешательства

Заключение

3D - моделирование легочных сосудов рекомендовано для эффективного планирования сублобарных анатомических резекций у пациентов с периферическими новообразованиями легких, особенно, в случае использования видеоассистированной техники.

СПАСИБО ЗА ВНИМАНИЕ